
104 Duan et al. / Front Inform Technol Electron Eng 2018 19(1):104-115

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Temporality-enhanced knowledge memory network

for factoid question answering∗

Xin-yu DUAN1, Si-liang TANG‡1, Sheng-yu ZHANG2, Yin ZHANG1,
Zhou ZHAO1, Jian-ru XUE3, Yue-ting ZHUANG1, Fei WU‡1

1College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
2School of Information Management, Wuhan University, Wuhan 430000, China

3Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China

E-mail: {duanxinyu, siliang}@zju.edu.cn; light.e.gal@gmail.com; {zhangyin98, zhaozhou}@zju.edu.cn;

jrxue@mail.xjtu.edu.cn; {yzhuang, wufei}@zju.edu.cn

Received Nov. 25, 2017; Revision accepted Jan. 24, 2018; Crosschecked Jan. 25, 2018

Abstract: Question answering is an important problem that aims to deliver specific answers to questions posed
by humans in natural language. How to efficiently identify the exact answer with respect to a given question
has become an active line of research. Previous approaches in factoid question answering tasks typically focus on
modeling the semantic relevance or syntactic relationship between a given question and its corresponding answer.
Most of these models suffer when a question contains very little content that is indicative of the answer. In this
paper, we devise an architecture named the temporality-enhanced knowledge memory network (TE-KMN) and apply
the model to a factoid question answering dataset from a trivia competition called quiz bowl. Unlike most of the
existing approaches, our model encodes not only the content of questions and answers, but also the temporal cues
in a sequence of ordered sentences which gradually remark the answer. Moreover, our model collaboratively uses
external knowledge for a better understanding of a given question. The experimental results demonstrate that our
method achieves better performance than several state-of-the-art methods.
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1 Introduction

Question answering (QA) is an application that
enables users to post their questions and to solve
problems. The benefits of QA systems have been
well recognized in Jurczyk and Agichtein (2007) and
Li et al. (2012). Some QA sites are becoming more
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and more popular in the real world and have accu-
mulated a vast number of questions with their corre-
sponding answers over time. With a huge amount of
QA data, QA has become an active line of research
and attracted a lot of attention in the fields of in-
formation retrieval and natural language processing
(NLP) (Bilotti et al., 2010). Among the varieties of
QA research, factoid question answering (FQA) is
one of the most widely studied tasks (Wang, 2006).

Given a natural language question, FQA aims to
extract entity answers. The single sentence question
(Bao et al., 2014; Yao and Durme, 2014) is the most
common form of FQA, e.g., “which continent is the
largest in the world?” There is another form of FQA
which is given as a paragraph describing a certain
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entity. A typical example of such FQA is called quiz
bowl question answering (Boyd-Graber et al., 2012;
Iyyer et al., 2014). It is a popular trivia game of
students in high school and college throughout the
world. In quiz bowl question answering, users read
several sentences one by one and attempt to answer
the question after reading fewer sentences. A quiz
bowl question is composed of a sequence of ordered
sentences describing an answer from different per-
spectives, which can be extracted from an entity set.
It has a property called pyramidality, which means
that the prior sentences in a question description re-
mark harder and more obscure cues, whereas later
sentences are ‘giveaways’. Table 1 shows an example
of a quiz bowl question with its corresponding an-
swer. Words with the same color share the same in-
dicative cues to the answer (e.g., the Notre Dame du
Haut and the Villa Savoye are two buildings designed
by Le Corbusier using reinforced concrete framing.
The long horizontal sliding windows are one high-
light of the Villa Savoye). The question consists of
six sentences in order.

The existing approaches tend to treat the quiz
bowl problem as a text classification task, focus

merely on exploiting the semantic relevance between
the individual sentence and its corresponding an-
swer, and attempt to discover a better embedding
space to perform the semantic classification on quiz
bowl data. However, some studies in the fields of
sociology and biology (Carr, 1993; Ivry, 1996) dis-
covered that the formation of a decision is in general
influenced by the temporal cue transmittance in a
flow of information. In a real quiz bowl competi-
tion, given a sequence of ordered sentences (e.g., the
example in Table 1, where the sentences form a sin-
gle question in quiz bowl), the indicative cues are
gradually delivered sentence by sentence. Thus, it
is better to collaboratively use the temporal cues in
sentence order to identify the corresponding answer.
Moreover, human beings will probably retrospect rel-
evant auxiliary information when reading sentences.
In most cases, it is rational that we use external
knowledge that relates to each descriptive sentence
to give a correct answer (Minsky, 1991; Schweppe
and Rummer, 2013). As a result, we speculate that
temporal cue transmittance and auxiliary external
knowledge are two factors that contribute to answer-
ing quiz bowl questions, and we assume that it is
probably meaningful to capture the temporal cues in
a sequence of ordered sentences and leverage auxil-
iary knowledge that relates to each reading sentence.

Inspired by our assumption, we are more inter-
ested in how to effectively leverage the temporal cues
in a sequence of ordered sentences (the answer is in
general described from different aspects) and aux-
iliary external knowledge (each sentence can spark
relevant information that relates to itself with re-
spect to a given question), to improve the answering
performance for the quiz bowl question. In par-
ticular, we devise a new architecture named the
temporality-enhanced knowledge memory network
(TE-KMN). This end-to-end architecture introduces
an attention-based sequential model, which is an
extension of the gated recurrent unit (GRU) (Cho
et al., 2014), to capture the temporal cues in the
sequence of ordered sentences (i.e., how the cues in
ordered ahead sentences influence the understanding
of the later sentences). Meanwhile, external mem-
ory is employed to leverage auxiliary knowledge that
relates to each reading sentence and augments the
understanding of each reading sentence.

Several contributions of our work are high-
lighted as follows:
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1. Different from traditional content-based
methods, a novel architecture TE-KMN is proposed
to leverage auxiliary knowledge that relates to each
reading sentence and the temporal cues in a sequence
of descriptive sentences with respect to a given
question.

2. Based on traditional GRU, we introduce a se-
quential model with attention mechanism in our pro-
posed architecture, namely temporality-enhanced
gated recurrent unit (T-GRU), to capture the tem-
poral cues in a sequence of ordered sentences. This
attention mechanism transfers more effectively the
cues from ordered ahead sentences than those from
the later sentences.

3. The auxiliary knowledge that relates to each
reading sentence in an external memory is adopted to
understand each reading sentence in our knowledge
memory network.

2 Related work

Question answering is a popular research line
in NLP. Previous studies on FQA can be catego-
rized into two tasks: answer classification and answer
ranking. Answer classification aims at classifying the
quality of answers while answer ranking focuses on
figuring out the best answer among numerous can-
didate answers concerning a certain question. These
studies commonly rely on exploring semantic or syn-
tactic features of QA data. Sun et al. (2005) tried
to detect the semantic and syntactic relationship be-
tween questions and answers. Navigli and Velardi
(2010) presented a lattice-based approach to defini-
tion and hypernym extraction. Huang et al. (2007)
integrated textual features to represent the candi-
date QA pairs and used a support vector machine
(SVM) to classify QA pairs. Despite the typical fea-
tures, Shah and Pomerantz (2010) trained a logistic
regression (LR) classifier and predicted the quality of
answers in CQA. Ding et al. (2008) proposed a model
on the conditional random field (CRF) to capture
contextual features from the answer sequence for se-
mantic matching between QA pairs. Figueroa and
Atkinson (2011) proposed maximum entropy context
models for ranking biographical answers to definition
queries on the Internet. Some methods use various
features at the thread level that allow more consis-
tent global decisions and exploit the relationship be-
tween pairs of comments at any distance in the an-

swer list with respect to a question (Barrón-Cedeño
et al., 2015; Joty et al., 2015). Some translation
models were used to match QA by transferring the
answers to the corresponding question (Jeon et al.,
2005; Xue et al., 2008; Zhou et al., 2011). However,
the performance of translation-based approaches de-
teriorates when there are many informal words or
phrases in QA archives.

Recently, some studies reported the applications
of deep neural networks to QA tasks. Wang et al.
(2010) proposed a deep belief network (DBN) based
semantic relevance model to learn the distributed
representation of QA pairs. Shen et al. (2015) calcu-
lated a similarity matrix for each QA pair containing
the lexical and sequential information and then used
a deep convolutional neural network (CNN) to esti-
mate the suitable answer probability. Different from
the classical CNN used in Shen et al. (2015), Qiu and
Huang (2015) introduced a dynamic CNN (Kalch-
brenner et al., 2014) to encode the variable-length
sentences of questions and answers in the semantic
space and model their interactions with a tensorial
top layer. Besides CNN, another kind of neural net-
work has been successfully applied in textual con-
tent analysis. In Le and Mikolov (2014), a recurrent
neural network (RNN) was employed to represent
each sentence or one document by a dense vector.
In Sutskever et al. (2014), a multi-layer RNN was
used to map the input sentence to a vector of fixed
dimensionality.

The success of RNN on NLP (Mikolov et al.,
2010) shows that it is capable of handling long-term
dependencies by adaptively memorizing values for
either long or short durations. Long short-term
memory (LSTM) neural network (Mikolov et al.,
2010), GRU (Cho et al., 2014), and their bidirec-
tional variants BiLSTM (Graves et al., 2005) also
show promising results in many NLP fields such as
machine translation (Bahdanau et al., 2014), named
entity recognition (Ma and Hovy, 2016), and read-
ing comprehension (Chen et al., 2016). Meanwhile,
many studies (Chorowski et al., 2015; Luong et al.,
2015; Rush et al., 2015) applied attention mechanism
to RNNs to improve the performance of NLP tasks.
The idea is to allow the model to attend over past
output vectors, thereby mitigating the RNN’s cell
state bottleneck.

Quiz bowl question answering is a typical ex-
ample of FQA. In recent years, many approaches
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have been proposed to solve the quiz bowl ques-
tions using machine learning methods. Boyd-Graber
et al. (2012) introduced a naive-Bayes model to iden-
tify the answer based on manually defined sequence
matching rules and bag of words (BOW) represen-
tations. To enrich the semantics in sentence repre-
sentation, Iyyer et al. (2014) used a dependency-tree
recursive neural network (DT-RNN) to exploit de-
pendency information in sentence encoding. Zheng
et al. (2015) introduced a multi-channel CNN to rep-
resent quiz bowl questions at the sentence level and
paragraph level. Iyyer et al. (2015) proposed a deep
averaging network (DAN) to map a descriptive para-
graph to its answer.

Reasoning via cross-media (e.g., textual and vi-
sual modalities) is very important for human beings.
There are many applications of cross-media (Yang
et al., 2008; Zhuang et al., 2008). In the NLP field,
many researchers have tried to endow their mod-
els with the ability of reasoning by leveraging aux-
iliary knowledge since the importance of auxiliary
knowledge has long been recognized (Fillmore, 1976;
Minsky, 1991). Earlier NLP systems mostly exploit
restricted linguistic knowledge such as manually-
encoded morphological and syntactic patterns. With
the advanced development of the knowledge base,
large amounts of semantic knowledge has become
available. Many studies have exploited the use of
these knowledge bases (e.g., DBPedia and FreeBase)
to improve the performance of their models in many
NLP tasks (Nakashole and Mitchell, 2015; Wei et al.,
2017; Yang and Mitchell, 2017). Recently, the mem-
ory network (Sukhbaatar et al., 2015) has achieved
influential results in machine reading comprehension
(Pan et al., 2017), which proves that the memory
network is able to better understand the input docu-
ments. Meanwhile, Ghazvininejad et al. (2017) used
a memory network to memorize and understand the
external knowledge in a conversation generation task
and has shown certain promise.

3 Methodology

In this section, we introduce the proposed
temporality-enhanced knowledge memory network
(TE-KMN) in detail (Fig. 1). The proposed model
consists mainly of the following steps: individual en-
coding of each sentence, temporal cue transmittance
in a sequence of ordered sentences using T-GRU, and

utilization of auxiliary knowledge that relates to each
reading sentence.

3.1 Sentence encoder

The first step in our architecture is to repre-
sent the textual contents of descriptive sentences and
knowledge with proper semantic embeddings. In our
model, an RNN-based method (Mikolov et al., 2013)
is employed to model the distributed representation
of each word in the dataset D = {d1,d2, . . . ,dm}
and the knowledge memory K = {k1,k2, . . . ,kn},
where di (i = 1, 2, . . . ,m) is a question (a descrip-
tive paragraph consisting of a sequence of ordered
sentences), kj (j = 1, 2, . . . , n) is one fact (i.e., in
the form of one sentence) in the knowledge mem-
ory, and m and n the numbers of questions in the
dataset and the facts in the memory, respectively.
After training, each word is associated with a unique
distributed vector. Each sentence in the dataset and
knowledge memory is encoded as a vector of a fixed
number of dimensions, which is the average summa-
tion of the distributed representation of words with
respect to the sentence.

3.2 Temporality-enhanced GRU

A significant characteristic of quiz bowl is that
users are given a sequence of ordered sentences de-
scribing different aspects of an answer. These sen-
tences have a property called pyramidality, which
means that sentences ordered ahead deliver harder
and more obscure cues, while the later ones are
‘giveaway’. When users read these sentences one by
one, they are likely to recall cues in the previously
read sentences and collaboratively use all of compre-
hended sentences to give the answer. As a result, we
here introduce T-GRU, which is a variation of the
standard GRU in Cho et al. (2014), to encode the
temporal cues in the ordered sequence sentences.

The lower part of Fig. 1b illustrates the de-
tails of T-GRU. T-GRU can enhance the temporal
cues from previous T-GRUs by introducing attention
mechanism. h1,h2, . . . ,ht−1 are the hidden output
of previous T-GRUs at time 1, 2, . . . , t − 1, respec-
tively. xt is the distributed representation of the
input sentence and h(t) is the hidden output of the
current T-GRU at time t. σ and tanh are the sigmoid
activation function and tanh activation function,
respectively.



108 Duan et al. / Front Inform Technol Electron Eng 2018 19(1):104-115

(a)

...

...... ... ...

. . .

...

σ   

1-

σ   

r(t)

......

. . .

(b)
. . .

. . .

............

..................

(c)

......

Knowledge
in memory ...

s1

... ... ... .... . .

......

Knowledge
selection

Descriptive
sentences

Answers

s3

s2

st

sT

TE
-K

M
N

h1

h3

h2

ht-1
h1h2

ht-1Sentence
encoding

xt

z(t) ĥ(t)
tanh

Element-wise
multiplication

Addition

Sigmoid
function

Tanh
function+

× σ   

tanh

× ×

× +

+

WC

WA

Attentive weights

WB

WU

ht

h1h2

ht-1

ht (tmp)

xt

ht

ht-2

ht-2

Attention before update

Attention after update

xt

T-GRU

T-GRU

Fig. 1 Overview of our proposed temporality-enhanced knowledge memory network (TE-KMN)
(a) The lower left is the training data. For each answer, there are several ordered descriptive sentences which gradually
describe the different aspects of one answer (i.e, one entity). The ordered ahead sentences remark fewer and harder cues with
respect to a given answer, and the later sentences are ‘giveaways’. The upper left is a knowledge memory consisting of auxiliary
external knowledge that will be used during reading each sentence. In this study, the knowledge is from Wikipedia. (b) Given
an answer, assume there are T ordered sentences in total describing different aspects of this answer (i.e., s1, s2, . . . , sT ). Each
sentence si is encoded to a distributed vector xi. The hidden representation hi (1 ≤ i ≤ t− 1) of each sentence will influence
the learning of hidden representation ht of xt. The hidden representation ht is then transmitted to the knowledge memory
network to be further handled by the relevant auxiliary knowledge that relates to sentence st. (c) The update of the attention
mechanism in T-GRU. The upper right is the T-GRU with attention before update. The lower right is the same T-GRU with
attention after update. Parameters other than αi remain intact during the update. h1,h2, . . . ,ht−1 are the hidden outputs
from the T-GRUs that read the previous sentences. The red and green solid circles represent the values of αi before and after
update, respectively. References to color refer to the online version of this figure

To strengthen the cues triggered by the previous
sentences, we add another attention gate mt, which
merges h1,h2, . . . ,ht−1 into a uniform vector. mt is
updated by the following equation:

mt =
t−1∑

i=1

αi · hi, (1)

where αi ∈ [0, 1] and
∑t−1

i=1 αi = 1. αi are initialized
to 1/(t−1) at the beginning of the training. Because
αi can directly decide the way in which T-GRU ac-
cepts the previous cues, the values of αi influence
the mt of T-GRU at each time step. Therefore, we
argue that αi contribute to the performance of our
proposed model in the quiz bowl task.

The update of αi is shown in Fig. 1c and the
process of update can be divided into two parts:

1. T-GRU generates ht(tmp) using xt and the
hidden outputs from previous T-GRUs that read in
the sentences in a sequence order with their corre-
sponding αi before the update. Then all αi’s are

updated using the following equation:

αi =
exp(hT

t(tmp) · hi)
∑t−1

i=1 exp(h
T
t(tmp) · hi)

. (2)

2. The updated values of α are the new weights
for all of the previous hidden outputs. The current
T-GRU generates its new hidden output ht using
h1,h2, . . . ,ht−1 with their corresponding new αi.

The gates in T-GRU can modulate the inter-
actions between T-GRU and its environment. The
update gate zt decides how much the unit updates
its activation or content and is computed as follows:

zt = σ(Wzxt +Uzmt). (3)

The reset gate effectively makes the unit act as if
it were reading the first symbol of an input sequence,
allowing it to forget the previously computed state.
The reset gate rt is computed in a manner similar to
the update gate:

rt = σ(Wrxt +Urmt). (4)
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The candidate activation ĥt is computed as

ĥt = tanh(Wĥxt +Uĥ(rt �mt)), (5)

where ‘�’ is the element-wise multiplication opera-
tion. The activation ht of T-GRU at time t is a
linear interpolation between attention gate mt (i.e.,
all of the previously hidden outputs) and candidate
activation ĥt:

ht = (1− zt)mt + ztĥt. (6)

Note that W∗ and U∗ are weight matrices that
are almost the same as their counterparts in the stan-
dard GRU. The architecture and implementation of
T-GRU are based on a standard GRU.

Based on the distributed representation of in-
put sentences, T-GRU in our method enhances the
temporal cues in a sequence of ordered sentences in
quiz bowl and therefore constructs the semantic links
between sentences in terms of specific aspects.

3.3 Knowledge memory network

In general, when reading a sentence, human be-
ings will recall relevant knowledge that relates to that
sentence to better understand the sentence. To en-
dow our architecture with the ability to employ the
already memorized external knowledge, we introduce
the knowledge memory network to assist T-GRU and
boost the understanding of the sentence currently
being read. Given a sequence of ordered sentences
s1, s2, . . . , sT , where T is the number of sentences
in a question, and xi the distributed representation
of the corresponding sentence, the memory network
will select the relevant fact kj to sentence xi using a
score function:

score(xi,kj) =
xi · kj

‖xi‖ · ‖kj‖ . (7)

The network selects the top K facts of each
sentence and puts them into the memory (i.e., set
Q). The knowledge memory network learns to un-
derstand the stored knowledge combining the hidden
output ht of T-GRU and gives an answer to the cur-
rent input sentence. The stored knowledge set Q

is converted into memory vector set A and output
vector set C using the following equations:

ai = WAqi, ci = WCqi. (8)

The hidden output ht of T-GRU is also embed-
ded to obtain an internal state ut:

ut = WUht. (9)

In the embedding space, we compute the match
between ut and each memory ai by taking the inner
product followed by a softmax function:

pi = softmax(uT
t ai), (10)

where softmax(z) = ez/
∑

j e
zj and p = [p1, p2, . . .]

T

is a probability vector over the inputs. Then the
response vector from memory ot is a sum over the
transformed inputs ci, weighted by the probability
vector from the input:

ot =
∑

i

pici. (11)

The input embedding ut together with ot is then
passed through a final weight matrix WB and a soft-
max function to produce the predicted label bt:

bt = softmax(WB(ot + ut)). (12)

3.4 Training

Before training TE-KMN, we pre-train the em-
bedding of each word in the dataset and knowledge
memory. After that, we model the distributed rep-
resentation of each sentence and each fact with the
trained word vectors. Next, we select the top K most
relative facts that relate to each reading sentence in
a quiz bowl question using Eq. (7) and store them
into the knowledge memory. Then we feed the sen-
tences of each question in order into our model one
by one. TE-KMN produces a probability vector bt
over the inputs at each time step. According to the
predicted label bt, the loss function for quiz bowl can
be written as

lt = −
n∑

i=1

yi · log(bti), (13)

where y is the true label of the answer. With the loss
function (13), by denoting all the parameters in our
model as θ, the optimization problem in the training
process is

min
θ

L(θ) = min
θ

∑

D

∑

S

lt + λ ‖θ‖22 , (14)

where D represents the training data, S all the
sentences of a descriptive paragraph, and λ > 0
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a hyper-parameter to trade-off training loss and
regularization.

To minimize the objective function, we use the
stochastic gradient descent (SGD) method in the
back propagation algorithm. At time step t, pa-
rameter θ is updated as follows:

θt = θt−1 − ρ√∑t
i=1 g

2
i

gt, (15)

where ρ is the initial learning rate and gt the sub-
gradient at time step t. The whole training process
is summarized in Algorithm 1.

Algorithm 1 TE-KMN for quiz bowl
Input: Quiz bowl question set Q, answer set A, knowl-

edge set K, selected knowledge C, and the number
of iterations m.

Output: Given each sentence of a quiz bowl question,
predict the answer.

1: Initialize all parameters of TE-KMN
2: for i = 1 to m do
3: for q ∈ Q do
4: C = ∅

5: for s ∈ q and s is a sentence of q do
6: C += knowledgeselection(s)
7: end for
8: for s ∈ q and s is a sentence of q do
9: ht = T-GRU(h1,h2 . . . ,ht−1,xi)

10: bt = KMN(ht, C)
11: Calculate the loss lt with bt
12: end for
13: Accumulate the training loss
14: Update parameters by the stochastic gradient

descent method
15: end for
16: end for

4 Experiments

4.1 Experimental setup

To empirically evaluate and validate our pro-
posed architecture TE-KMN, we conduct the ex-
periments on a dataset of quiz bowl question an-
swering that involves fields of history, literature,
places, etc. This dataset was originally pub-
lished by National Academic Quiz Tournaments
(NAQT, https://sites.google.com/view/hcqa/data).
Each question in the dataset consists of a sequence
of ordered sentences and a corresponding answer.

We filter the questions with respect to the answers
that appear substantially less often than others. The
statistics of the data is summarized in Table 2.

Table 2 Statistics of the quiz bowl dataset

Dataset
Number of Number of Average number of
questions sentences sentences in a question

Training 9059 43 271 4.78
Development 1013 4921 4.86
Test 4319 20 901 4.84
All 14 391 69 093 4.80

The knowledge we use in the experiments is
mainly from two resources: (1) We crawl the
Wikipedia webpages that relate to all the answers
in the dataset. The summation part of each page
is taken as the auxiliary knowledge. (2) We main-
tain the knowledge in the training set. We replace
unclear subjects in each sentence with its associated
answer. Therefore, we form a knowledge memory
that includes more than 49 747 facts. A total of 6476
facts are from Wikipedia and the remaining facts are
from the training set.

4.2 Evaluation metric

Considering that the quiz bowl question answer-
ing problem is similar to a classification task, we
evaluate the performance of our proposed TE-KMN
based on a widely used classification evaluation met-
ric, which is defined as follows:

Accuracy =
| {d ∈ D | rd = rtrue} |

|D| , (16)

where |D| is the number of questions in the test
dataset, d indicates a single quiz bowl question, rd
is the answer conjectured by the evaluated method,
and rtrue is the correct answer of question d.

4.3 Baselines and parameter setting

To demonstrate the efficiency and effectiveness
of our proposed TE-KMN, we compare it with six
popular content-based algorithms and its two degen-
erated versions, which are listed as follows:

1. BOW (Boyd-Graber et al., 2012): a BOW
method is used to represent the textual content,
and a naive-Bayes model is used to identify the
answer.

2. QANTA (Iyyer et al., 2014): a DT-RNN is de-
veloped and extended to combine predictions across
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sentences to produce a question answering neural
network with trans-sentential averaging. QANTA
takes word embedding and the dependency tree as
the input, and predicts the corresponding answer.

3. DAN (Iyyer et al., 2015): DAN feeds an un-
weighted average of word vectors through multiple
hidden layers before classification.

4. HCNN (Zheng et al., 2015): HCNN is a
stacked CNN to learn both sentence representation
and paragraph representation of the original text and
map these features to their corresponding answers.

5. GRU (Cho et al., 2014): A standard GRU
receives a sentence at each time step and is used
to model the interaction in a sequence of ordered
sentences without attention mechanism.

6. BiLSTM (Graves et al., 2005): BiLSTM takes
the word vector at each time step. The information
propagates directionally through the whole network.

7. TE-KMN−K: the knowledge memory network
is removed from TE-KMN and the influence of aux-
iliary knowledge is ignored. TE-KMN−K maintains
only the connections between a sentence and its pre-
vious sentences.

8. TE-KMN−T: Similar to TE-KMN−K, TE-
KMN−T is another degenerated version of TE-KMN
which neglects the enhancement of the temporal cues
from the previous sentences but maintains the knowl-
edge memory network.

The words in the dataset and knowledge mem-
ory are represented by a 300-D vector pre-trained
by the word2vec tool (Mikolov et al., 2013) filtering
the words appearing only once or over 400 times.
The input sentences and facts are represented with a
300-D vector with the trained word vectors. We se-
lect five most relevant facts of each reading sentence
from the knowledge memory. The weights of neu-
ral networks are randomly initialized by a Gaussian
distribution with zero mean. The hyper-parameters
and parameters that achieve the best performance

on the development set are chosen to conduct the
test evaluation.

4.4 Performance comparison

To evaluate the performance of our proposed
architecture, we conduct several experiments on the
quiz bowl dataset.

As mentioned previously, we argue that the ap-
propriate capturing of temporal cues in a sequence of
descriptive sentences and the effective leveraging of
auxiliary knowledge that relates to each sentence are
two essential factors in quiz bowl questions. To vali-
date that these two factors could improve the perfor-
mance of our proposed architecture, we degenerate
our proposed approach into two simplified versions:
TE-KMN−T and TE-KMN−K.

Table 3 shows the average accuracy after giving
the first i (i = 1, 2, . . . , 5) sentence(s) for each quiz
bowl question. Table 4 presents the average accuracy
when different ratios of training data are used.

With these experimental results, we can have
several interesting observations:

1. DAN, QANTA, HCNN, and BiLSTM have
better performances than GRU and TE-KMN−K,
because GRU and TE-KMN−K take sentence vectors
as the input, losing a lot of semantics when averaging
the summation of each word vector with respect to
the corresponding sentence.

2. TE-KMN and TE-KMN−T have promising
experimental results when the training data is incom-
plete, which shows the power of leveraging auxiliary
external knowledge in answering quiz bowl questions.
The knowledge memory network memorizes the ex-
ternal knowledge and helps the model give a more ap-
propriate answer using the auxiliary knowledge that
relates to each reading sentence.

3. TE-KMN−K is more competitive in the later
positions compared with the standard GRU, which

Table 3 Accuracy of obtaining the right answer given different numbers of first sentences of each quiz bowl
question

Number of first Accuracy (%)

sentences given BOW QANTA DAN HCNN GRU BiLSTM TE-KMN−K TE-KMN−T TE-KMN

1 34.24 43.21 43.83 44.93 40.76 50.53 41.33 63.52 66.07
2 50.31 56.93 57.51 56.42 51.56 62.04 52.50 67.61 70.77
3 51.12 57.26 57.93 59.19 53.11 63.27 54.74 69.44 72.91
4 51.40 57.45 58.02 60.25 54.21 63.61 56.32 69.93 73.94
5 51.72 57.59 58.11 61.44 55.46 64.02 57.70 70.22 74.46
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Table 4 Accuracy with different ratios of training data

Ratio of Accuracy (%)

training data BOW QANTA DAN HCNN GRU BiLSTM TE-KMN−K TE-KMN−T TE-KMN

25% 22.38 30.75 32.50 31.94 26.17 33.31 26.40 46.22 47.70
50% 31.42 42.88 43.59 46.09 39.00 46.85 39.94 57.03 60.41
75% 40.37 49.93 51.78 53.62 46.23 55.20 47.04 63.59 67.00

100% 51.91 57.64 58.22 61.51 55.53 64.19 57.85 70.35 74.80

proves that the temporal cues in a sequence of or-
dered sentences have a positive effect on answering
performance of quiz bowl questions. The sentences
ordered ahead contain cues that inspire the model to
better understand the sentences in later order. Thus,
the temporal cue is able to improve the performance
of TE-KMN.

4. TE-KMN−T outperforms the standard GRU
and achieves better performance when there is less
training data, which indicates that our knowledge
memory network can greatly boost TE-KMN with
auxiliary knowledge.

5. TE-KMN and TE-KMN−T have promising
leads over other content-based baselines at the im-
mediately prior positions (i.e., the 1st and 2nd sen-
tences). One possible reason is that the prior sen-
tences contain few cues that directly indicate the
correct answer. It is hard for content-based methods
to capture the cues of sentences ordered ahead and
build semantic links to their answers. TE-KMN and
TE-KMN−T are more sensitive to the latent cues
because the knowledge memory network can reason
using the auxiliary external knowledge and the ob-
scure cues.

6. TE-KMN−K has a better performance than
TE-KMN−T, which shows that the knowledge mem-
ory network contributes more than T-GRU to our
proposed model in answering quiz bowl questions.

7. TE-KMN achieves the best performance com-
pared with other models. The results demonstrate
that the combined use of temporal cues in a sequence

of ordered sentences and auxiliary external knowl-
edge can improve the performance of our model in
answering quiz bowl questions.

4.5 Analysis of auxiliary external knowledge

The knowledge memory contains auxiliary ex-
ternal knowledge from Wikipedia and the training
set. Wikipedia accounts for 13.02% and the remain-
ing 86.98% of the knowledge is from the training
set. To validate which part of the auxiliary knowl-
edge is more sensitive to the cues in quiz bowl ques-
tions, we train TE-KMNwiki with knowledge only
from Wikipedia and TE-KMNtrain with knowledge
only from the training set. Given different num-
bers of the first sentences of each quiz bowl question,
Table 5 illustrates the accuracy of TE-KMNwiki, TE-
KMNtrain, TE-KMN−K, and TE-KMN.

As shown in Table 5, given the 1st sentence of
quiz bowl questions, TE-KMNwiki is slightly better
than TE-KMN−K, and TE-KMNtrain represents a
promising improvement (53.47%) over TE-KMNwiki.
However, the disparity decreases to 17.44% after the
first five sentences are given. Compared with the
performance given the 1st sentence, the performance
of TE-KMNwiki has an improvement of 45.70% at the
5th sentence while the performance of TE-KMNtrain

has an improvement of 11.49%. The results reveal
that the knowledge from the training set remarks
hard and obscure cues that are instrumental in un-
derstanding sentences ordered ahead in quiz bowl
questions (i.e., ordered ahead sentences remark fewer

Table 5 Accuracy of obtaining the right answer when using different knowledge memories

Number of Accuracy (%)

first sentences given TE-KMN−K TE-KMNwiki TE-KMNtrain TE-KMN

1 41.33 42.08 64.58 66.07
2 52.50 53.28 68.71 70.77
3 54.74 55.66 70.58 72.91
4 56.32 58.60 71.45 73.94
5 57.70 61.31 72.00 74.46
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cues with respect to the answer), while the knowl-
edge from Wikipedia contains more obvious and di-
rect cues which can clearly match the cues in later
ordered sentences (i.e., later sentences deliver more
helpful indications to capture the answer).

4.6 Attention mechanism in T-GRU

To verify that the attention mechanism in T-
GRU can capture the temporal cues in a sequence of
ordered sentences, we take the question in Table 1 as
an example and illustrate the attention before and
after training respectively in Fig. 2. Note that the
question in Table 1 is not used to train the model.

0.0

0.5

1.0Pos. 1 2 3 4 5 6Pos. 1 2 3 4 5 6
1
2
3
4
5
6

1
2
3
4
5
6

Before training After training

Fig. 2 Update of attention in a sequence of ordered
sentences shown in Table 1
Pos. represents the position of each sentence in the question.
Each row exhibits the attention changes of one sentence with
each of its previous sentences. The darker color indicates a
greater ratio of the corresponding attention

As shown in Fig. 2, considering the temporal
cues labeled in Table 1, sentences ordered ahead have
a positive influence on the later ones when they share
the same indicative temporal cues to the answer. T-
GRU is able to capture these temporal cues after
being well trained.

5 Conclusions and future work

We have introduced a neural network method
that incorporates the temporal cues in a sequence
of ordered sentences with respect to a given ques-
tion and auxiliary external knowledge to improve
the performance in answering quiz bowl questions.
Empirical results on the NAQT quiz bowl dataset
show that TE-KMN outperforms other state-of-the-
art methods, which proves that temporal cues and
auxiliary external knowledge contribute to the bet-
ter performance of our proposed model.

In the future, we hope to enhance the reasoning
ability (Pan, 2016; Zhuang et al., 2017) of our pro-
posed model and find a more effective way of dealing
with temporality in quiz bowl question answering.

We are also looking forward to applying our model
to other deep learning tasks to prove its effectiveness.
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